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Abstract: Analysing climate change is challenging due to climate data’s intricate and dynamic nature. The primary 
issue is starting with high dimensionality. High dimensionality impacts the model’s performance, computation 
time, cost, and accuracy. Feature selection can be employed as a strategy to address the issue of dimensionality 
reduction, resulting in more precise insights and the identification of more explicit patterns. Various techniques 
are used for feature selection. Still, there is scope for progress in this field.

This study uses fuzzy rough set theory (FRST) to perform feature selection in the analysis of climatic data. 
The dataset in the present study, obtained from Kaggle, is an authentic climate change dataset in the real world. 
FRST effectively addresses uncertainty and vagueness in climate data by identifying the most relevant temperature 
parameters and treating them as the deciding attribute. 

We identified 25 reducts from the original dataset using FRST. Compared to the original dataset, the best 
reducts had good classification accuracy. It indicates that FRST reducts preserve the essential features of the 
original climate data, assuring the reduced dataset’s integrity and relevance. FRST was more accurate than usual 
climate data analysis methods, proving its efficacy.
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Introduction

Climate change is one of the most significant 
global issues, affecting economies, cultures, and the 
environment. Global warming and climate change 
provide significant challenges with potentially terrible 
consequences, as observed globally. We must implement 
stringent policies and strictly adhere to safety guidelines 
to prevent the extensive loss of the ecosystem 
agriculture (Malhi et al., 2021), water resources, human 
health (Charlson et al., 2022; Valentová & Bostik, 
2021), ecosystems (Malhi et al., 2020), and the economy 
(Wade & Jennings, 2016). Climate models and computer 

simulations conducted by climate experts show that the 
Earth’s average temperature could increase by 2–9.7°F 
(1.1–5.4°C) by the year 2100 (Lindsey & Dahlman, 
2021). The primary cause of this increase in temperature 
is mainly the emission of Green House Gases like 
water vapours, carbon dioxide (CO2), methane (CH4), 
nitrous oxide (N2O), ozone (O3) and chlorofluorocarbon 
(CFC), etc. CO2 emission is the leading cause of 
global warming in the second half of the 20th century 
(Marland et al., 2003). The 2018 intergovernmental 
study on climate change predicts severe consequences 
if global greenhouse gas (GHG) emissions are not 
stopped within 30 years (Rosenberg, 2010). Climate 
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research datasets are massive and complicated, requiring 
advanced data analytics to understand and prevent their 
consequences. However, climate data’s high complexity 
and uncertainty make analysis difficult (Hassani et al., 
2019). 

Machine learning algorithms are crucial in climate 
change data analysis because they can efficiently handle 
intricate data and identify patterns and linkages that 
conventional methods may overlook. ML finds high-
impact issues, such as overcoming gaps in intelligent 
grids and disaster management (Rolnick et al., 2023). 
Support vector machine is used for classification and 
support vector regression for prediction tasks in climate 
change analysis (Chen et al., 2011; Khan et al., 2021; 
Tripathi et al., 2006). The neural network is another 
machine learning tool used widely for prediction and 
classification, and it is an effective tool for image 
processing (Maqsood et al., 2022; Bône et al., 2023). 
K-means clustering is a popular unsupervised machine 
learning approach for feature similarity-based dataset 
clustering. K-Means clustering can group comparable 
climate patterns, identify regional climate zones, and 
assess climate variable temporal trends in climate 
change data (Doan et al., 2023; Huang & Jane, 2009; 
Sadeghi et al., 2022; Gupta & Jain, 2018). By combining 
machine-learning approaches with statistical methods 
or domain-specific models, hybrid machine-learning 
models can improve climate change data analysis 
predictions, classification, and insights (Anaraki et al., 
2021; Kumar, 2023; Yasodha & Ananthanarayanan, 
2015).

In order to use machine learning algorithms, data 
should be precise and clean. Climate datasets often 
have many unnecessary or redundant variables, 
complicating analysis and resulting in less accurate 
conclusions. Due to errors in measurement, missing 
values, and environmental dynamics, climate data 
could be imprecise, compounding the issue of high 
dimensionality (Papadopoulos & Balta, 2022).

Support vector machine, Regression, Neural network, 
and K-NN are some methods used for feature selection 
climate data analysis. Regression is mostly used to 
find more impacting factors. Different regression 
models are used as per the necessity, like meta-analysis 
regression (MRA) (Chaikumbung, 2023), spurious 
Regression, and regressions involving non-stationary 
variables (Cummins et al., 2022). logistic regression 
machine learning algorithms to identify greenhouse 
gas emissions data pre-processed using min-max 
normalization forecast well (Adnan et al., 2023). Multi-
collinearity and a high number of variables may make 

OLS Regression impractical, but LASSO regression, 
Ridge regression, and Elastic net Regression can 
overcome OLS’s shortcomings (Yamaka et al., 2021). 
Regression has specific limitations: it cannot handle 
data with multi-collinearity (Dormann et al., 2013), data 
quality issues like missing or imprecise data (Thorne et 
al., 2011), data-infused with outliers (Hawkins, 2004). 
Recent advancements in artificial intelligence, including 
deep learning, have shown promise, but their application 
in climate studies is still evolving.

Fuzzy Rough Set Theory (FRST) is a mathematical 
framework that combines fuzzy logic and rough set 
theory (Dubois & Prade, 1990), providing an adaptable 
approach for handling uncertainty and imprecision in 
data processing, feature extraction, Rule induction, 
and decision-making (Acharjya & Rathi, 2022; Bhatt 
& Gopal, 2005; Ewees et al., 2020; Lasisi et al., 
2016; Pamucar et al., 2023; Tsang et al., 2008; Zhao 
et al., 2010). It enhances the current rough set theory 
by incorporating partial membership, enabling a 
more nuanced depiction of uncertain and indistinct 
information (Jensen & Shen, 2009). Fuzzy Rough Set 
Theory provides a flexible framework for addressing 
uncertainties in predicting the impact of greenhouse 
gases. It enhances interpretation using a nuanced 
approach to data imprecision and ambiguity (Zadeh, 
1965). 

Fuzzy rough set theory has shown effectiveness for 
feature selection for complex and uncertain datasets in 
recent years. Fuzzy rough set theory handles imprecision 
and uncertainty, making it ideal for climate data. 
Fuzzy rough set theory can improve traditional data 
analytics by identifying relevant features and removing 
redundancy, providing more accurate and meaningful 
insights into climatic trends and interactions. This study 
applies fuzzy rough set theory to analyse climate data 
and uncover essential features causing temperature 
change. Doing so presents a sophisticated method for 
managing uncertainty and improving our understanding 
of the complex nature of climate interactions. Also, we 
applied regression analysis to identify essential features 
and compare the performance of both methods for the 
prediction of temperature change.

Research Methodology

Fuzzy Rough Set Theory (FRST) is an expanded version 
of Rough Set Theory (RST) that incorporates fuzzy 
set concepts to handle uncertainty and vagueness. The 
fundamental mathematical terminology utilized in FRST 
includes the following:
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Fuzzy Sets and Fuzzy Relations
	 •	 Fuzzy Set A on U × X:
		  A is a fuzzy set defined on the Cartesian product 

U × X where U is the set of Universe, and X is the 
set of attributes. A(µ, x) Represents the membership 
degree µ of x in the fuzzy set A

		  Mathematically, A: U × X ® [0, 1] 
	 •	 Fuzzy Relation RA on U × U:
		  RA is the fuzzy relation resulting from the fuzzy 

set A, and it shows associations between elements 
in the universe U. Fuzzy relation RA (s, t) for the 
elements s, t, ∈ U, represents the degree between 
u and v based on the fuzzy set A.

		  Mathematically, RA: U × U → [0, 1], where
		  RA(s, t) = min x ∈ X {A(s, x), A(t, x)})

Lower and Upper Fuzzy Approximations:
	 •	 Fuzzy Lower Approximation (A(B)):
		  The set consists of features that certainly belong to 

the fuzzy set A, which is a subset of B. The minimum 
function assures the inclusion of only things with 
high assurance.The fuzzy lower approximation of 
A is the union of the lower membership degrees of 
A for each element in B where subset A ⊆ U,

		  Mathematically, A(B) = Uu BA(u), where A(u) = 
minx∈X A(u, x).

	 •	 Fuzzy Upper Approximation (A(B)):
		  This includes features about the fuzzy set A within 

the subset B. The maximal function ensures 
the inclusion of components that have partial 
membership.The fuzzy upper approximation of A 
is the union of the upper membership degrees of A 
for each element in B where subset B ⊆ U,

		  Mathematically, 

      	A(B) = Uu ∈ BA(u), where A(u) = maxx∈X A(u, x).

Core and Boundary Regions
	 •	 Fuzzy Core (Core (A)):The fuzzy core of set A 

consists of items for which the lower and upper 
approximations are identical. This indicates 
that these components indeed belong to A. 
The fuzzy core of A denotes the set of features 
for which the lower and upper approximations 
overlap entirely.

		  Mathematically, Core (A) = {u ∈ U| A(u) = A(u)}.
	 •	 Fuzzy Boundary (∂A):The fuzzy boundary of 

A represents the set of features for which the 
lower and upper approximations do not overlap.

Mathematically, ∂A = U\Core(A). 

Fuzzy Reduct (A) and Decision Rules
		  A fuzzy reduct is a minor collection of attributes 

that preserves the discernibility properties in the 
fuzzy context. Identifying fuzzy reducts involves 
finding a subset of attributes B ⊆ X such that A(B) 
= A(B).

		  Mathematically, Reduct (A) = {x ∈ X | A(x) = A(x)}.
	 •	 Fuzzy Decision Rule (B→D):
		  A fuzzy decision rule is derived from a fuzzy 

reduct B and decision attribute D. It represents a 
relationship between the subset of attributes B and 
the decision attribute D in the fuzzy context.

Mathematically, B →D holds if A(B U{D}) 
= A(B U{D}).

Fuzzy Rough Set Theory combines fuzzy and 
rough sets to handle imprecision and uncertainty. 
The mathematical framework involves defining fuzzy 
relations based on fuzzy sets, computing fuzzy lower 
and upper approximations, identifying fuzzy core and 
boundary regions, and determining fuzzy reducts to 
extract meaningful information in uncertainty. 

Climate data often originate from diverse sources such 
as satellite observations, ground-based measurements, 
and climate models. Sometimes, it is susceptible to 
missing or incomplete observations. Fuzzy Rough 
Set Theory is uniquely suited for analysing complex 
climate-related data because it can handle uncertainties, 
integrate multisource data, extract meaningful patterns, 
and provide decision support in fuzzy environments.

Case Study

In this study, we used climate data from May 1983 to 
December 2008 taken from the Kaggle website. The 
available data include a total of 9 attributes and 308 
observations. Details about the data are given in Table 1.

Pre-Processing of the Data
Fuzzy Rough Set Theory (FRST) is a powerful method 
for detecting and managing outliers, missing values, and 
erroneous data in datasets. It achieves this by employing 
fuzzy membership functions and approximations. 
The algorithm assigns a membership degree to each 
data point, enabling the identification of outliers that 
significantly depart from the usual data ranges. FRST 
establishes border regions by utilising lower and higher 
approximations, thereby identifying outliers as data 
points that fall outside these bounds. FRST addresses 
missing and inaccurate data by incorporating uncertainty 
via fuzzy sets and imputing values based on related data 
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Table 1: Data details

Sr. No. Attribute Details Source
1 Temp The deviation, measured in degrees Celsius, between 

the average global temperature during a specified 
period and a reference value

Climatic Research Unit at the University of 
East Anglia.

2 CO2 Carbon Dioxide ESRL/NOAA Global Monitoring Division
3 N2O Nitrous Oxide
4 CH4 Methane
5 CFC-11 Tri Chloro-Fluoro methane
6 CFC-12 Di Chloro-Difluoro methane
7 Aerosols The mean stratospheric aerosol optical depth at 550 

nm
Godard Institute for Space Studies at NASA

8 TSI The total solar irradiance SOLARIS-HEPPA project website.
9 MEI multivariate El Nino Southern Oscillation index ESRL/NOAA Physical Sciences Division

points. This approach ensures that the analysis remains 
resilient even in the presence of incomplete or erroneous 
information. This methodology is highly suitable for 
intricate datasets, accurately identifying outliers.

Moreover, it offers flexibility in adjusting to evolving 
data patterns.

Results and Discussion

Decisional Table
The data is organised into conditional and decisional 
attributes in FRST and is referred to as a decisional 
table. In the current data, ‘Temp’ is the only decisional 
attribute, whereas the remaining eight variables are 
conditional attributes. We used R software to reduce the 
FRST attribute. The data was initially normalised, and 
then we used R’s ‘RoughSetPackage’ to generate a set 
of reducts (a reduced collection of attributes).

As previously noted, climate data is collected from 
various sources, including satellite observations, ground-
based measurements, and climate models. Climate 
change is a global phenomenon with interconnected 
systems. So, it is observed that the model needs help 
to capture the broader impacts and interactions. We 
obtained a total of 25 reducts. The performance of 
reducts is given in Table 2. The performance of each 
reduct is assessed using a Random Forest model, 
employing a cross-validation testing technique with 
ten folds and three repetitions. This combination 
comprehensively evaluates the model’s accuracy and 
ability to generalize. Table 3 gives Reducts and their 
performance.

Interpretation from the FRST Reducts
RMSE, Rsquared, and MAE are metrics used to check 

the accuracy of the reducts for prediction. RMSE 
penalizes more significant errors to reveal the model’s 
prediction accuracy. R squared measures the model’s 
predictive ability by measuring the proportion of 
variance explained. MAE is easy to read and measures 
average error prediction; these measures would be 
combined to evaluate model performance.

• High performing reducts
Based on their frequent inclusion in top reducts and 
agreement with the scientific understanding of climate 
change factors, CO2, N2O, CFC_12, TSI, MEI, and 
Aerosols are the essential criteria for temperature 
prediction.

• Low performing reducts
CH4 and CFC.11 attributes perform poorly, implying 
that they alone cannot explain temperature variance 
and that additional anthropogenic causes must be 
considered. These aspects are less critical in temperature 
modeling but should be addressed in complete climate 
assessments.

• Overall Conclusion for the performance of reducts
The original data’s RMSE of 0.0697, R-squared of 
0.8561, and MAE of 0.0531 provide a solid temperature 
prediction baseline. However, the reducts generated by 
FRST, with fewer features, also performed comparable 
and, in some cases, better accuracy metrics than the 
original dataset for temperature prediction. Let us 
compare the metric performance given in Table 3.

The reducts obtained by FRST exhibit a high level 
of accuracy, comparable to the complete dataset. 
This indicates that these selected features effectively 
represent the crucial factors influencing temperature 
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Table 2: Reducts and their performance

Reduct RMSE Rsquared MAE

CO2, CFC.12, TSI 0.07297839 0.8385665 0.05617610

CFC.11, TSI 0.1017114 0.6914656 0.07805482

MEI, CO2, N2O, CFC.12 0.07402929 0.8337500 0.05718342

MEI, CO2, N2O, CFC.12, TSI, Aerosols 0.07072951 0.8496601 0.05438029

N2O, TSI 0.08201193 0.7945125 0.06340683

N2O, CFC.11 0.07483289 0.8301461 0.05746496

MEI, CO2, N2O, CFC.12, TSI, Aerosols 0.09669404 0.7158756 0.07461719

CH4, TSI 0.0959312 0.7167543 0.07375469

CH4, CFC.12 0.08075624 0.8002665 0.06284183

CH4, CFC.11 0.08342491 0.7871987 0.06374292

CH4, N2O 0.08545164 0.7797217 0.06536471

CO2, Aerosol 0.06869305 0.7982172 0.05767735

CO2, TSI 0.01010565 0.7900788 0.06850357

CO2, CFC12 0.07487109 0.8327623 0.05766616

CO2, N2O 0.05268504 0.8136582 0.0531278

CO2, CH4 0.1094267 0.634997 0.08648479

CO2, CFC11 0.0784023 0.8125331 0.06036547

MEI, CFC.11 0.1011338 0.691984 0.0782230

MEI, CH4 0.1165169 0.5820787 0.08816766

MEI , CO2, N2O, CFC_12, TSI, Aerosols 0.07876883 0.8135444 0.05929967

MEI, N2O 0.07286242 0.8392453 0.05586151

MEI, CFC.12 0.079821 0.8102288 0.06082631

MEI, TSI 0.1814416 0.0964548 0.1449752

MEI, Aerosols 0.09638725 0.7186111 0.07241071

MEI , CO2, CH4, TSI , Aerosols 0.08077717 0.8053545 0.06187857

Table 3: Performance of original data and high-performing reducts

RMSE R-Squared MAE
Original data 0.0697 0.8561 0.0531
MEI, CO2, N2O, CFC.12, TSI,  Aerosols 0.070729 0.8496 0.05438

changes. This suggests that by concentrating on these 
essential elements, targeted interventions and analysis 
can be employed to attain comparable predicted results, 
hence improving the efficiency and interpretability of 
the model.

Interpretation from Regression Analysis
The regression model will help to find the relationship 
between temperature change and all other factors. 

Here, temperature change will be considered as the 
dependent variable. All other factors, i.e. (MEI), Carbon 
Dioxide (CO2), Methane (CH4), Nitrous Oxide (N2O), 
Chlorofluorocarbons (CFC.11 and CFC.12), Total 
Solar Irradiance (TSI), and Aerosols will be treated as 
dependent variables. We used R-programming to get the 
results for the regression model. Data is pre-processed 
using R to deal with outliers and multi-co-linearity. The 
statistical summary of the model is given in Table 4
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Table 4: Results from regression model

Variable Estimate Std. Error t value P-value

(Intercept) -127.7 19.19 -6.654 1.36E-10

MEI 0.06632 0.006186 10.722 < 2e-16

CO2 0.005207 0.002192 2.375 0.0182

CH4 6.371E-05 0.000498 0.128 0.8982

N2O -0.01693 0.007835 -2.161 0.0315

CFC.11 -0.007278 0.001461 -4.98 1.07E-06

CFC.12 0.004272 0.000876 4.875 1.77E-06

TSI 0.09586 0.01401 6.844 4.38E-11

Aerosols -1.582 0.2099 -7.535 5.86E-13

The model clarifies the intricate interactions that 
cause temperature changes, making it useful for 
climate change research and policymaking. According 
to the regression model, MEI, CO2, TSI, and aerosols 
significantly impact temperature. The unexpected 
N2O results suggest more research into its role and 
interactions in the climate system.

Comparisons of Results from FRST Reducts and 
Regression
The regression model and Fuzzy Rough Set Theory 
(FRST) analysis reveal key factors influencing 
temperature variations. The regression model performs 
well, with an R-squared of 0.744, explaining 74.4% 
of temperature variance. This model identifies MEI, 
CO2, CFC.11, CFC.12, TSI, and Aerosols as significant 
contributions, as expected. The regression also shows 
surprising results, such as the negative coefficient 
for N2O, suggesting complicated interactions or 
confounding factors not captured by the model.

However, FRST reducts are also accurate, with 
numerous combinations approaching the original 
dataset. The best features MEI, CO2, N2O, CFC.12, 
TSI, and Aerosols have an R-squared of 0.8496, 
almost matching the original data’s 0.8561. These 
features capture the most temperature variance, 
validating the regression model. 

Both techniques consistently identify CO2 as an 
essential component, supporting their global warming 
functions. CFC_12 and TSI are also substantial, showing 
anthropogenic emissions and natural fluctuation. 
Although CH4 is less successful in the regression model, 
it occurs in effective reducts in the FRST analysis, 
demonstrating its importance in certain settings. MEI’s 
consistency among reducts underscores its importance 
in recording ENSO-related temperature fluctuations.

Conclusion

This work by FRST introduces a powerful approach for 
selecting features that can handle non-linear interactions 
and the complexity of climatic variables more effectively, 
resulting in more accurate and realistic conclusions. 
FRST’s high-performing reducts effectively capture data 
variance comparable to the regression model, thereby 
accurately capturing real-world climate dynamics. FRST 
may provide a more accurate representation of reality 
in complex, uncertain settings such as climate science.  
Both FRST and Regression have their advantages 
and downsides. FRST is more computationally 
intensive, whereas regression is more straightforward to 
implement. On the other hand, FRST is more adept at 
handling outliers than regression. In the future, a hybrid 
technique can be employed, utilising FRST to identify 
crucial features and regression analysis to determine the 
weightage of each feature.

Table 5: Performance of the regression model

Metric Value Interpretation
Residual Standard Error 0.09182  RSE 0.09182 is low which indicates a good fit between the model’s predictions 

and observed data.
Multiple R-squared 0.744 74.4% prediction accuracy indicates a strong correlation between independent and 

dependent variables.
Adjusted R-squared 0.7371 The adjusted R-squared provides a more precise estimate of model performance 

when several predictors exist. When predictors are used, 73.71% of the variation 
is explained.

F-statistic 108.6 The F-statistic assesses regression model significance. Here, a high F-statistic 
indicates a better data fit than a model without independent variables.

P-value (F-statistic) < 2.2e-16 A p-value of < 0.05 shows a significant regression model, indicating that the 
independent factors collectively affect the dependent variable (temperature).
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