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Abstract: Analysing climate change is challenging due to climate data’s intricate and dynamic nature. The primary
issue is starting with high dimensionality. High dimensionality impacts the model’s performance, computation
time, cost, and accuracy. Feature selection can be employed as a strategy to address the issue of dimensionality
reduction, resulting in more precise insights and the identification of more explicit patterns. Various techniques
are used for feature selection. Still, there is scope for progress in this field.

This study uses fuzzy rough set theory (FRST) to perform feature selection in the analysis of climatic data.
The dataset in the present study, obtained from Kaggle, is an authentic climate change dataset in the real world.
FRST effectively addresses uncertainty and vagueness in climate data by identifying the most relevant temperature
parameters and treating them as the deciding attribute.

We identified 25 reducts from the original dataset using FRST. Compared to the original dataset, the best
reducts had good classification accuracy. It indicates that FRST reducts preserve the essential features of the
original climate data, assuring the reduced dataset’s integrity and relevance. FRST was more accurate than usual

climate data analysis methods, proving its efficacy.
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Introduction

Climate change is one of the most significant
global issues, affecting economies, cultures, and the
environment. Global warming and climate change
provide significant challenges with potentially terrible
consequences, as observed globally. We must implement
stringent policies and strictly adhere to safety guidelines
to prevent the extensive loss of the ecosystem
agriculture (Malhi et al., 2021), water resources, human
health (Charlson et al., 2022; Valentova & Bostik,
2021), ecosystems (Malhi et al., 2020), and the economy
(Wade & Jennings, 2016). Climate models and computer
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simulations conducted by climate experts show that the
Earth’s average temperature could increase by 2-9.7°F
(1.1-5.4°C) by the year 2100 (Lindsey & Dahlman,
2021). The primary cause of this increase in temperature
is mainly the emission of Green House Gases like
water vapours, carbon dioxide (CO,), methane (CH,),
nitrous oxide (N,0), ozone (O5) and chlorofluorocarbon
(CFC), etc. CO, emission is the leading cause of
global warming in the second half of the 20th century
(Marland et al., 2003). The 2018 intergovernmental
study on climate change predicts severe consequences
if global greenhouse gas (GHG) emissions are not
stopped within 30 years (Rosenberg, 2010). Climate
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research datasets are massive and complicated, requiring
advanced data analytics to understand and prevent their
consequences. However, climate data’s high complexity
and uncertainty make analysis difficult (Hassani et al.,
2019).

Machine learning algorithms are crucial in climate
change data analysis because they can efficiently handle
intricate data and identify patterns and linkages that
conventional methods may overlook. ML finds high-
impact issues, such as overcoming gaps in intelligent
grids and disaster management (Rolnick et al., 2023).
Support vector machine is used for classification and
support vector regression for prediction tasks in climate
change analysis (Chen et al., 2011; Khan et al., 2021;
Tripathi et al., 2006). The neural network is another
machine learning tool used widely for prediction and
classification, and it is an effective tool for image
processing (Magsood et al., 2022; Bone et al., 2023).
K-means clustering is a popular unsupervised machine
learning approach for feature similarity-based dataset
clustering. K-Means clustering can group comparable
climate patterns, identify regional climate zones, and
assess climate variable temporal trends in climate
change data (Doan et al., 2023; Huang & Jane, 2009;
Sadeghi et al., 2022; Gupta & Jain, 2018). By combining
machine-learning approaches with statistical methods
or domain-specific models, hybrid machine-learning
models can improve climate change data analysis
predictions, classification, and insights (Anaraki et al.,
2021; Kumar, 2023; Yasodha & Ananthanarayanan,
2015).

In order to use machine learning algorithms, data
should be precise and clean. Climate datasets often
have many unnecessary or redundant variables,
complicating analysis and resulting in less accurate
conclusions. Due to errors in measurement, missing
values, and environmental dynamics, climate data
could be imprecise, compounding the issue of high
dimensionality (Papadopoulos & Balta, 2022).

Support vector machine, Regression, Neural network,
and K-NN are some methods used for feature selection
climate data analysis. Regression is mostly used to
find more impacting factors. Different regression
models are used as per the necessity, like meta-analysis
regression (MRA) (Chaikumbung, 2023), spurious
Regression, and regressions involving non-stationary
variables (Cummins et al., 2022). logistic regression
machine learning algorithms to identify greenhouse
gas emissions data pre-processed using min-max
normalization forecast well (Adnan et al., 2023). Multi-
collinearity and a high number of variables may make

OLS Regression impractical, but LASSO regression,
Ridge regression, and Elastic net Regression can
overcome OLS’s shortcomings (Yamaka et al., 2021).
Regression has specific limitations: it cannot handle
data with multi-collinearity (Dormann et al., 2013), data
quality issues like missing or imprecise data (Thorne et
al., 2011), data-infused with outliers (Hawkins, 2004).
Recent advancements in artificial intelligence, including
deep learning, have shown promise, but their application
in climate studies is still evolving.

Fuzzy Rough Set Theory (FRST) is a mathematical
framework that combines fuzzy logic and rough set
theory (Dubois & Prade, 1990), providing an adaptable
approach for handling uncertainty and imprecision in
data processing, feature extraction, Rule induction,
and decision-making (Acharjya & Rathi, 2022; Bhatt
& Gopal, 2005; Ewees et al., 2020; Lasisi et al.,
2016; Pamucar et al., 2023; Tsang et al., 2008; Zhao
et al., 2010). It enhances the current rough set theory
by incorporating partial membership, enabling a
more nuanced depiction of uncertain and indistinct
information (Jensen & Shen, 2009). Fuzzy Rough Set
Theory provides a flexible framework for addressing
uncertainties in predicting the impact of greenhouse
gases. It enhances interpretation using a nuanced
approach to data imprecision and ambiguity (Zadeh,
1965).

Fuzzy rough set theory has shown effectiveness for
feature selection for complex and uncertain datasets in
recent years. Fuzzy rough set theory handles imprecision
and uncertainty, making it ideal for climate data.
Fuzzy rough set theory can improve traditional data
analytics by identifying relevant features and removing
redundancy, providing more accurate and meaningful
insights into climatic trends and interactions. This study
applies fuzzy rough set theory to analyse climate data
and uncover essential features causing temperature
change. Doing so presents a sophisticated method for
managing uncertainty and improving our understanding
of the complex nature of climate interactions. Also, we
applied regression analysis to identify essential features
and compare the performance of both methods for the
prediction of temperature change.

Research Methodology

Fuzzy Rough Set Theory (FRST) is an expanded version
of Rough Set Theory (RST) that incorporates fuzzy
set concepts to handle uncertainty and vagueness. The
fundamental mathematical terminology utilized in FRST
includes the following:
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Fuzzy Sets and Fuzzy Relations

* Fuzzy Set 4 on U x X:
A is a fuzzy set defined on the Cartesian product
U x X where U is the set of Universe, and X is the
set of attributes. A(u, x) Represents the membership
degree pn of x in the fuzzy set 4
Mathematically, 4: U x X — [0, 1]

+ Fuzzy Relation R, on U x U:
R, is the fuzzy relation resulting from the fuzzy
set 4, and it shows associations between elements
in the universe U. Fuzzy relation R, (s, f) for the
elements s, 7, € U, represents the degree between
u and v based on the fuzzy set 4.
Mathematically, R;: U x U — [0, 1], where
R (s, t) =min x € X {A(s, x), A(t, x)})

Lower and Upper Fuzzy Approximations:

* Fuzzy Lower Approximation (4(B)):
The set consists of features that certainly belong to
the fuzzy set 4, which is a subset of B. The minimum
function assures the inclusion of only things with
high assurance.The fuzzy lower approximation of
A is the union of the lower membership degrees of
A for each element in B where subset 4 U,
Mathematically, A(B) = Uu B,(u), where A(u) =
min, _y A(u, x).

¢ Fuzzy Upper Approximation (4(B)):
This includes features about the fuzzy set A within
the subset B. The maximal function ensures
the inclusion of components that have partial
membership.The fuzzy upper approximation of 4
is the union of the upper membership degrees of 4
for each element in B where subset B < U,
Mathematically,

A(B) = Uu € BA(u), where A(u) = max,_y A(u, X).

Core and Boundary Regions

 Fuzzy Core (Core (4)):The fuzzy core of set A
consists of items for which the lower and upper
approximations are identical. This indicates
that these components indeed belong to A.
The fuzzy core of 4 denotes the set of features
for which the lower and upper approximations
overlap entirely.
Mathematically, Core (4) = {u € U| A(u) = A(u)}.

« Fuzzy Boundary (0A4):The fuzzy boundary of
A represents the set of features for which the
lower and upper approximations do not overlap.

Mathematically, 04 = U\Core(4).

Fuzzy Reduct (4) and Decision Rules

A fuzzy reduct is a minor collection of attributes
that preserves the discernibility properties in the
fuzzy context. Identifying fuzzy reducts involves
finding a subset of attributes B € X such that A(B)
= A(B).

Mathematically, Reduct (4) = {x € X | 4(x) = A(x)}.

e Fuzzy Decision Rule (B—D):

A fuzzy decision rule is derived from a fuzzy
reduct B and decision attribute D. It represents a
relationship between the subset of attributes B and
the decision attribute D in the fuzzy context.

Mathematically, B —D holds if A(B U{D})
=A(B U{D}).

Fuzzy Rough Set Theory combines fuzzy and
rough sets to handle imprecision and uncertainty.
The mathematical framework involves defining fuzzy
relations based on fuzzy sets, computing fuzzy lower
and upper approximations, identifying fuzzy core and
boundary regions, and determining fuzzy reducts to
extract meaningful information in uncertainty.

Climate data often originate from diverse sources such
as satellite observations, ground-based measurements,
and climate models. Sometimes, it is susceptible to
missing or incomplete observations. Fuzzy Rough
Set Theory is uniquely suited for analysing complex
climate-related data because it can handle uncertainties,
integrate multisource data, extract meaningful patterns,
and provide decision support in fuzzy environments.

Case Study

In this study, we used climate data from May 1983 to
December 2008 taken from the Kaggle website. The
available data include a total of 9 attributes and 308
observations. Details about the data are given in Table 1.

Pre-Processing of the Data

Fuzzy Rough Set Theory (FRST) is a powerful method
for detecting and managing outliers, missing values, and
erroneous data in datasets. It achieves this by employing
fuzzy membership functions and approximations.
The algorithm assigns a membership degree to each
data point, enabling the identification of outliers that
significantly depart from the usual data ranges. FRST
establishes border regions by utilising lower and higher
approximations, thereby identifying outliers as data
points that fall outside these bounds. FRST addresses
missing and inaccurate data by incorporating uncertainty
via fuzzy sets and imputing values based on related data
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Table 1: Data details

Sr. No. Attribute Details Source

1 Temp The deviation, measured in degrees Celsius, between Climatic Research Unit at the University of
the average global temperature during a specified East Anglia.
period and a reference value

2 CcoO, Carbon Dioxide ESRL/NOAA Global Monitoring Division

3 N,O Nitrous Oxide

4 CH, Methane

5 CFC-11 Tri Chloro-Fluoro methane

6 CFC-12 Di Chloro-Difluoro methane

7 Aerosols The mean stratospheric aerosol optical depth at 550 Godard Institute for Space Studies at NASA
nm

8 TSI The total solar irradiance SOLARIS-HEPPA project website.

9 MEI multivariate El Nino Southern Oscillation index ESRL/NOAA Physical Sciences Division

points. This approach ensures that the analysis remains
resilient even in the presence of incomplete or erroneous
information. This methodology is highly suitable for
intricate datasets, accurately identifying outliers.

Moreover, it offers flexibility in adjusting to evolving
data patterns.

Results and Discussion

Decisional Table

The data is organised into conditional and decisional
attributes in FRST and is referred to as a decisional
table. In the current data, ‘“Temp’ is the only decisional
attribute, whereas the remaining eight variables are
conditional attributes. We used R software to reduce the
FRST attribute. The data was initially normalised, and
then we used R’s ‘RoughSetPackage’ to generate a set
of reducts (a reduced collection of attributes).

As previously noted, climate data is collected from
various sources, including satellite observations, ground-
based measurements, and climate models. Climate
change is a global phenomenon with interconnected
systems. So, it is observed that the model needs help
to capture the broader impacts and interactions. We
obtained a total of 25 reducts. The performance of
reducts is given in Table 2. The performance of each
reduct is assessed using a Random Forest model,
employing a cross-validation testing technique with
ten folds and three repetitions. This combination
comprehensively evaluates the model’s accuracy and
ability to generalize. Table 3 gives Reducts and their
performance.

Interpretation from the FRST Reducts
RMSE, Rsquared, and MAE are metrics used to check

the accuracy of the reducts for prediction. RMSE
penalizes more significant errors to reveal the model’s
prediction accuracy. R squared measures the model’s
predictive ability by measuring the proportion of
variance explained. MAE is easy to read and measures
average error prediction; these measures would be
combined to evaluate model performance.

* High performing reducts

Based on their frequent inclusion in top reducts and
agreement with the scientific understanding of climate
change factors, CO,, N,O, CFC 12, TSI, MEI, and
Aerosols are the essential criteria for temperature
prediction.

* Low performing reducts

CH, and CFC.11 attributes perform poorly, implying
that they alone cannot explain temperature variance
and that additional anthropogenic causes must be
considered. These aspects are less critical in temperature
modeling but should be addressed in complete climate
assessments.

* Overall Conclusion for the performance of reducts

The original data’s RMSE of 0.0697, R-squared of
0.8561, and MAE of 0.0531 provide a solid temperature
prediction baseline. However, the reducts generated by
FRST, with fewer features, also performed comparable
and, in some cases, better accuracy metrics than the
original dataset for temperature prediction. Let us
compare the metric performance given in Table 3.
The reducts obtained by FRST exhibit a high level
of accuracy, comparable to the complete dataset.
This indicates that these selected features effectively
represent the crucial factors influencing temperature
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Table 2: Reducts and their performance

Reduct RMSE Rsquared MAE
CO,, CFC.12, TSI 0.07297839 0.8385665 0.05617610
CFC.11, TSI 0.1017114 0.6914656 0.07805482
MEI, CO,, N,O, CFC.12 0.07402929 0.8337500 0.05718342
MEI CO,, N,0O, CFC.12, TSI, Aerosols 0.07072951 0.8496601 0.05438029
N,O, TSI 0.08201193 0.7945125 0.06340683
N,O, CFC.11 0.07483289 0.8301461 0.05746496
MEI CO,, N,0, CFC.12, TSI, Aerosols 0.09669404 0.7158756 0.07461719
CH,, TSI 0.0959312 0.7167543 0.07375469
CH,, CFC.12 0.08075624 0.8002665 0.06284183
CH,, CFC.11 0.08342491 0.7871987 0.06374292
CH,, N,O 0.08545164 0.7797217 0.06536471
CO,, Aerosol 0.06869305 0.7982172 0.05767735
CO,, TSI 0.01010565 0.7900788 0.06850357
CO,, CFC12 0.07487109 0.8327623 0.05766616
CO,, N,O 0.05268504 0.8136582 0.0531278
CO,, CH, 0.1094267 0.634997 0.08648479
CO,, CFC11 0.0784023 0.8125331 0.06036547
MEI, CFC.11 0.1011338 0.691984 0.0782230
MEI, CH, 0.1165169 0.5820787 0.08816766
MEI, CO,, N,O, CFC_12, TSI, Aerosols 0.07876883 0.8135444 0.05929967
MEI, N,O 0.07286242 0.8392453 0.05586151
MEI, CFC.12 0.079821 0.8102288 0.06082631
MEI, TSI 0.1814416 0.0964548 0.1449752
MEI, Aerosols 0.09638725 0.7186111 0.07241071
MEI, CO,, CH,, TSI, Aerosols 0.08077717 0.8053545 0.06187857

Table 3: Performance of original data and high-performing reducts

RMSE R-Squared MAE

Original data 0.0697 0.8561 0.0531
MEI CO,, N,0O, CFC.12, TSI, Aerosols 0.070729 0.8496 0.05438

changes. This suggests that by concentrating on these
essential elements, targeted interventions and analysis
can be employed to attain comparable predicted results,
hence improving the efficiency and interpretability of
the model.

Interpretation from Regression Analysis
The regression model will help to find the relationship
between temperature change and all other factors.

Here, temperature change will be considered as the
dependent variable. All other factors, i.e. (MEI), Carbon
Dioxide (CO,), Methane (CH,), Nitrous Oxide (N,O),
Chlorofluorocarbons (CFC.11 and CFC.12), Total
Solar Irradiance (TSI), and Aerosols will be treated as
dependent variables. We used R-programming to get the
results for the regression model. Data is pre-processed
using R to deal with outliers and multi-co-linearity. The
statistical summary of the model is given in Table 4
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Table 4: Results from regression model

Variable Estimate Std. Error t value P-value
(Intercept) -127.7 19.19 -6.654 1.36E-10
MEI 0.06632 0.006186  10.722 <2e-16
CO, 0.005207  0.002192 2.375 0.0182
CH, 6.371E-05 0.000498 0.128  0.8982
N,O -0.01693  0.007835 -2.161 0.0315
CFC.11 -0.007278 0.001461 -4.98  1.07E-06
CFC.12 0.004272  0.000876 4.875 1.77E-06
TSI 0.09586 0.01401 6.844  4.38E-11
Aerosols  -1.582 0.2099 -7.535 5.86E-13

The model clarifies the intricate interactions that
cause temperature changes, making it useful for
climate change research and policymaking. According
to the regression model, MEI, CO,, TSI, and aerosols
significantly impact temperature. The unexpected
N,O results suggest more research into its role and
interactions in the climate system.

Comparisons of Results from FRST Reducts and
Regression

The regression model and Fuzzy Rough Set Theory
(FRST) analysis reveal key factors influencing
temperature variations. The regression model performs
well, with an R-squared of 0.744, explaining 74.4%
of temperature variance. This model identifies MEI,
CO,, CFC.11, CFC.12, TSI, and Aerosols as significant
contributions, as expected. The regression also shows
surprising results, such as the negative coefficient
for N,O, suggesting complicated interactions or
confounding factors not captured by the model.

However, FRST reducts are also accurate, with
numerous combinations approaching the original
dataset. The best features MEI, CO,, N,O, CFC.12,
TSI, and Aerosols have an R-squared of 0.8496,
almost matching the original data’s 0.8561. These
features capture the most temperature variance,
validating the regression model.

Both techniques consistently identify CO, as an
essential component, supporting their global warming
functions. CFC 12 and TSI are also substantial, showing
anthropogenic emissions and natural fluctuation.
Although CH, is less successful in the regression model,
it occurs in effective reducts in the FRST analysis,
demonstrating its importance in certain settings. MEI’s
consistency among reducts underscores its importance
in recording ENSO-related temperature fluctuations.

Conclusion

This work by FRST introduces a powerful approach for
selecting features that can handle non-linear interactions
and the complexity of climatic variables more effectively,
resulting in more accurate and realistic conclusions.
FRST’s high-performing reducts effectively capture data
variance comparable to the regression model, thereby
accurately capturing real-world climate dynamics. FRST
may provide a more accurate representation of reality
in complex, uncertain settings such as climate science.
Both FRST and Regression have their advantages
and downsides. FRST is more computationally
intensive, whereas regression is more straightforward to
implement. On the other hand, FRST is more adept at
handling outliers than regression. In the future, a hybrid
technique can be employed, utilising FRST to identify
crucial features and regression analysis to determine the
weightage of each feature.

Table 5: Performance of the regression model

Metric Value Interpretation

Residual Standard Error  0.09182 RSE 0.09182 is low which indicates a good fit between the model’s predictions
and observed data.

Multiple R-squared 0.744 74.4% prediction accuracy indicates a strong correlation between independent and
dependent variables.

Adjusted R-squared 0.7371 The adjusted R-squared provides a more precise estimate of model performance
when several predictors exist. When predictors are used, 73.71% of the variation
is explained.

F-statistic 108.6 The F-statistic assesses regression model significance. Here, a high F-statistic
indicates a better data fit than a model without independent variables.

P-value (F-statistic) <22e-16 A p-value of < 0.05 shows a significant regression model, indicating that the

independent factors collectively affect the dependent variable (temperature).
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