

Journal of Climate Change, Vol. 2, No. 1 (2016), pp. 61–67. DOI 10.3233/JCC-160007

Enhancing Resilience for Sustainable Development in Lake Baikal and Baikal Basin: Fresh Water Paradise

Yu Hosaka¹, Chitresh Saraswat^{1*}, Aung Thu Moe¹, Pankaj Kumar¹ and AL. Ramanathan²

¹United Nations University, Institute for the Advanced Study of Sustainability (UNU-IAS) 5-53-70, Shibuya-Ku, Tokyo 150-8925, Japan ²School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India − 110067 ⊠ saraswat.chitresh@gmail.com

Received December 18, 2015; revised and accepted January 2, 2016

Abstract: Ensuring the water availability with better quality and quantity for all through sustainable management of it by the year 2030 is one of the top priorities of the United Nations Sustainable Development Goals (SDGs). With having proper knowledge about drivers causing water quality deterioration at right time will help policy makers to take right measures to retrieve the quality back to normal or at least stop further degradation. With the above theme, this work tries to give insight about the factors affecting water quality/quantity and strategy or action plan needed to overcome the challenges by enhancing community resilience for lake Baikal and Baikal basin. Main factors affecting water quality include anthropogenic activities well supported with lack of proper law enforcement, quality monitoring and climate variability.

Keywords: Lake Baikal; Water resources; Stresses; Sustainable management.

Introduction

Lake Baikal which is located in the south-east region of Siberia in Russia is globally significant as unique water resource. As it won't be overstated if it is said as is one of the world's most exceptional lakes. This is the world's oldest lake with more than 25 million years old as well as world's deepest lake with 1642 m. Most important is Lake Baikal stores more than 20% of the Earth's fresh and unfrozen water, With this it is also known as the world's most voluminous lake with area of 23,600 km (Robinson, 2001). In order of volume, it contains more amount of water than combined volume of all the five of USA Great Lakes (World Bank, 1996) (Figure 1).

The statistics of Lake Baikal which comprises length around 636 km and width ranges from 27 to 80 km. The famous characteristic of the lake is crystal clear clarity of the water, which even reaches to 45-55 metres in some areas. The lake Baikal water flowing into the lake from over around 300 years now. Situated on lake's western shore, the river Angara is only outlet of lake Baikal. The largest city of the region is Irkutsk, located on the river Angara. The Russian Government declared Lake Baikal to be one of the Seven Wonders of Russia in year 2008 (Baasanjav and Tsend-Ayush, 2001). The Lake was added to the UNESCO list of World Heritage Sites (UNESCO, 1996) in year 1996, because of cultural, archaeological and historical values and considered as natural phenomena which represent

Yu Hosaka et al.

Figure 1: Location of Lake Baikal in Siberia.

the exceptional examples of ongoing biological and ecological processes and the freshwater ecosystems developments and as this can be considered as the significant habitat for the conservation of biodiversity (William and Conroy, 1991). Furthermore, the Baikal

region includes cultural and archaeological monuments, many of them considered traditionally sacred.

The very important characteristic of this freshwater lake, which makes study of this area more necessary, is the impressive level of diversity because of presence

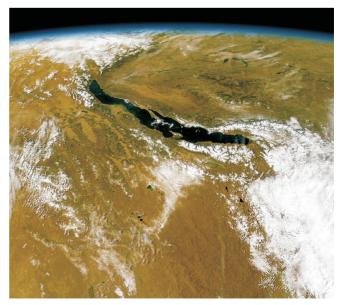


Figure 2: (Left) Lake Baikal location, (Right) orbital view of Lake Baikal.

of oxygen down to its deepest depths. The facts are 85% of known species (2565 in number) described as animal species (Timoshkin, 1995) and 40% of the 1000 endemic plant species (Bondarenko et al., 2006) are present here. The world's only fresh-water seal, the "Nerpa" or "Baikal seal" (Phoca sibirica), is the largest animal in the lake.

Description of Baikal Basin

Baikal Basin is a cross country ecosystem with more than 500,000 km area shared between Mongolia and Russia, with over 400 streams and rivers. Although lake Baikal is situated entirely in Russia (Figure 1), river Selenga is one of the major trans boundary water system in Asia and lake Baikal's biggest tributary. On average it brings more than annually 30 km³ of water to the Lake, which is around 60% of total inflow into the lake. Annual run off of around 46% of river Selegna is generated in Mongolia. The catchment area for river Selenga is 447,060 km², from which around 33% (148,060 km²) is within Russia and rest 67% lies within Mongolia. The Mongolian importance to the lake's long-term ecological health can be understood by the fact that the river Selenga comprises over 80% of the Baikal Basin. The delta with Selenga river of lake Baikal is one of the largest fresh water delta in the world added to RAMSAR list of international wetlands in 1994. A very large number of migrating, breeding and moulting water birds gather (come to) at the wetlands in the Selenga delta. Approximately number of total number of birds passing through the delta is 5,000,000 per year, which speaks about bio diversity this region holds (Matveyev et al., 2006).

Challenges—Environment and Sustainable Development Context

There are many challenges around the Baikal basin and Lake Baikal region, as number of human activities causing the changes in the flow of water and the interactions with hydrological cycle increase at many levels, like excess withdrawal of water from lakes, rivers and ground water in unsustainable methods causing various environmental damages. Deforestation around Siberia (Tundra) are also causing landscape changes which ultimately affect the quality and quantity of ground water and surface water of rivers (tributaries) of Lake Baikal.

The nature and amount of wastes coming in this lake is massive that just overpower the nature's ability to break them down into less harmful substances or make it degradable. An pervasive problem facing all the fresh water lakes is eutrophication, and problem for rivers is degradation of water quality.

Pollution has various environmental impacts within the Baikal basin and Lake Baikal being generated from various point and non-point pollution sources. The basin's ecosystem is facing threat from poisonous chemicals from industrial waste, toxic substances being dumped in water without any facility of treatment, increased levels of nutrients, heavy metals and suspended solids in Selenga Delta and coastal areas nearby. The biggest danger for water quality from land-based activities includes both point (e.g. industrial waste, chimney) and non-point (e.g. fertilizers, contamination of water) sources of pollution, which are also increasing threat to the Lake Baikal and its ecosystem. The point source releases such as municipal and industrial waste water from the major contributions (e.g. Ulan-Ude, Selenginsk, Irkutsk and Ulaan Baatar), placer gold mining, steel works & wood works and pulp & paper mills discharge good amounts of pollutants into ground and surface waters of lake and river.

Impact of Mining

The location of the Baikal region is situated where mining is the heart of the region's economic development and at the core concerns related to its adverse impacts to basin's ecosystem health. These impacts range from the contamination (e.g. cyanide, mercury, cadmium, lead, zinc, fluorine and chloride. All pose a serious threat to the Baikal basin ecosystem as well as to human health.) from toxic material and chemical used by the mining industry either legally/illegally, change into hydrological processes, and deterioration in the quality of water.

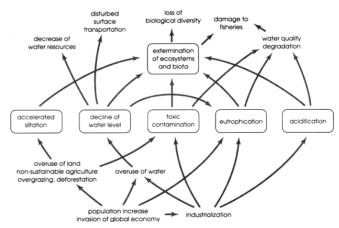


Figure 3: Graphical representation of enviornmental problem of Lake Baikal and Baikal basin (Baikal Watch, 1999).

Table 1: Analysis of stress on Baikal/Selenga basin ecosystem health/Sources of stress and underlying causes (Baikal Watch, 1999)

Sector	Stress	Source	Underlying cause/Barriers
1. Lake Baikal water	Water temperature rise	Climate variability	• Global CO ₂ emission
quality	• Coastal erosion and submersion of delta	 Rising lake levels 	 Irkutsk hydropower station flow regime on Angara river
	marshes	• Poor sanitation, erosion	· Lack of public funding for sanitation improvement, lack of enforcement
	• Rise in suspended solids along coastlines		of sanitation measures, pulp and paper mill wastewater releases
2. Baikal/Selenga	· Deteriorating water quality and elevated	 Pollution from industrial and municipal sources 	 Insufficient private and public investment in sanitation causing
Tributary river	suspended solids and pollution levels	Artesian gold mining	deteriorating condition of water works plus weak enforcement of
water quality	• Mercury releases and stream bed	 Climate variability and unsustainable uses 	pollution laws and conflicting water resource authorities
	degradation		• Low economic opportunities pushing citizens to try small scale
	• 780 streams, 590 lakes and tens of		unregistered alluvial gold mining
	mineral springs dried up 2003-2005		\bullet Global CO_2 emission and poorly regulated water abstraction practices
3. Selenga basin	• Localized increases in chemical and	• Insufficient centralized sanitation systems and poorly designed	· Lack of public and private funding plus lack of public awareness and
groundwater	nutrient pollution	private systems	uneven and weak enforcement of pollution discharge laws
		• Poor understanding of groundwater pollution sources	• Lack of groundwater monitoring
4. Fisheries	• Loss of Grayling, Lemok and Taimen	• Reduction in food sources (stoneflies, mayflies etc.) from river	 Weak enforcement of pollution, conservation and fisheries laws
	populations in lower Selenga region	bed disturbance and high suspended solids especially from	 Weak oversight of mining and timbering operations even within
	· Reduction in Omul and Sturgeon	alluvial gold mining	protected areas
	populations	• Degradation of spawning grounds from alluvial gold mining,	• Lack of awareness of economic advantages to healthy and well-
	• Rise in invasive species (Rotan, amur	industrial water pollution, cattle grazing in stream beds	managed migratory fisheries in terms of commercial catch and tourism
	Carp, amur Catfish)	• Drastically reduced numbers of adult fish due to overfishing and	opportunities
		illegal catch	 Lack of enforcement and inefficient stocking progress
		 Weakened indigenous fisheries 	 Lack of understanding of risk from release of non-native fish
		• Past release of alien species for improved fish catching	
		opportunities	
5. Other aquatic flora	• Reduction in zoobenthos in Baikal	Oxygen depletion	• Rapid spread of Canadian Elodea (aquatic vegetation)
and fauna	coastal areas and delta	• High toxicity levels plus habitat disturbance and illegal poaching	 Pollution plus weak enforcement of species protection laws
	• Reduction in Nerpa (freshwater seal)		
	population		
6. Basin forests	• Forest fires	 Warming temperature and draught 	 Breakdown in Mongolian forestry service
	• Illegal timber removal	 Increased urbanization 	 Lack of enforcement against illegal logging
	• Stunting and death of especially	 Increased acidification of rain water 	 Increased air pollution especially during winter season
	coniferous trees like pine, fir, spruces		
7. Human health	• Elevated levels of viral Hepatitis A	• Tainted decentralized source of drinking water	 Localized groundwater contamination from poor sanitation
	(VHA) in Baikal basin	• Exposure to anthrax from decaying livestock carasses	• Insufficient public water supply system (only 10% of population served)
	• Anthrax poisoning in two areas of		 Poor disposal system for dead livestock
	Buryatia		
8. Social/Economic	Population loss	Outmigration and natural loss	• Low level of development of social and economic infrastructure
Quality of Life	• High poverty ratios	• Lack of economic opportunities	

Impact of Hydrological Regime and Erosion, and Increase of Population

The erosion of waste-rock piles and tailing repositories are one of the important concerns in the Baikal basin region. In Mongolia, most piles of waste rocks from industrial mining are unstable and have danger of erosion. A small amount of rainfall in the region can washout gravel into soil in the valley streams and reach the lakes. Land can become polluted and streams, rivers, deltas and more over and near shore zone. The increase in urban population within the basin region has resulted in massive increase in the pollution level of Selenga river tributaries such as the Tuul, Kharaa, Eroo, Orkhon and Chikoy. In 2006 approx 400 gold-mining enterprises were registered in the Selenga basin, and reports say many more unregistered while no enterprise invested money in the pollution control measure even to earn more profit.

Impact of Deforestation and Forest Fire

Deforestation is biggest concern in the region as in last one decade an approx 40% of the total forested area of the Basin got reduced. Foreseen impact in various degrees can be seen due to over cutting and

anthropogenic (man-made) fires. Particularly affected have been the forest islands in the forest-steppe. In central Siberia, warmer and possibly drier summers are predicted to exacerbate the frequency and intensity of forest fires.

Impact of Nutrient Loading

The climate change will likely increase nutrient inputs (nitrogen and phosphorus) to Lake Baikal from both the basin and atmosphere. This, together with higher temperatures, will enhance primary productivity (PPR). Scientists are predicting that increased spring runoff resulting from increasing winter precipitation, coupled with the thawing of the permafrost, will most likely increase the loading of nutrients, sediments, and dissolved organic carbon (DOC) and particulate organic carbon (POC) to arctic lakes (Wrona et al., 2006). Atmospheric inputs of nutrients from forest fire ash are likely to increase in years to come. Summer forest fires have already increased in frequency and severity near Lake Baikal: seven of the years between 1998 and 2006 were considered extreme fire years in Siberia (Soja et al., 2007).

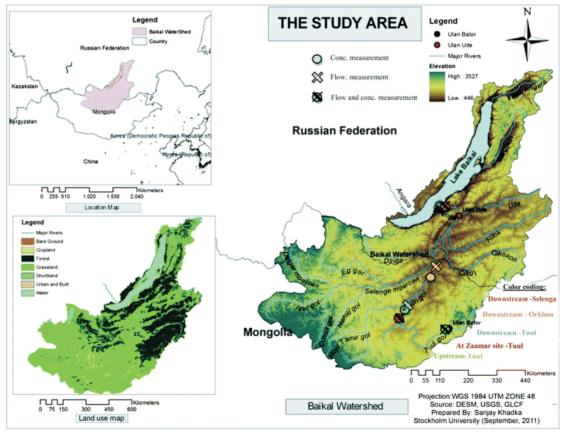


Figure 4: Baikal basin: Gold mining sites (Borodin and Syroechkovski, 1983).

Yu Hosaka et al.

Impact of Groundwater Pollution in the Basin

The primary source of drinking groundwater plays a very important role in the region from point of view of socio-economic role in both countries of the region. Groundwater is directly associated with surface waters.

Impact of Habitat Destruction

Destruction and/or modification of critical riparian, forest, and steppe habitats are increasing threats to Baikal's biodiversity and ecosystem health. Resource exploitation and associated infrastructure within the Baikal basin is spurring the degradation and destruction of wetland areas.

Impact of Climate Change

This is evident by various facts that the rapid climate change in the Baikal Basin, from Lake Hövsgöl in Mongolia to Lake Baikal, is now abundant. As we all know annual temperature of air has increased by 1.2° over last century, almost double the global average, temperature of winter increased by more than 2°C than observed in summer i.e. 0.8°C (Shimaraev et al., 2002). During the last 50 years, average temperatures in Mongolia have increased by 2°C and the growing season has increased by a month. According to recent analyses of ice cover and water temperature over the Lake Baikal, it is responding strongly to climate change (Moore et. al., 2009). Surface waters of Lake Baikal warmed rapidly and significantly to a depth of 25 m during the last 60 years (Hampton et al., 2008) and there is an observed warming trend in Baikal lake temperatures during the same six decades (+1.21°C since 1946). In addition, the ice-free season lengthened 18 days from 1869 to 2000, and ice thickness decreased 12 cm between 1949 and 2000 in the southern basin (Shimaraev et al., 2002).

The Strategy and Action Plan to Overcome the Challenges by Enhancing Community Resilience

In the face of such barriers, addressing strategy should look for the impacts on socio economic context, transborder cooperation and the environmental aspects. The focus of the action plan needs to include both hard and soft measures, at both centralized and localized levels.

Overcoming Socio-economic Barrier

The level of social development in the Baikal basin is relatively lower than the average of Russia by indices (per capita income, unemployment and poverty).

- Improving the low level awareness about environmental degradation on human health.
- Working toward public recognition of the causes of environmental degradation in the Baikal basin and Lake Baikal.
- Understanding the ongoing impacts of climate change on the Baikal basin and the resilience of its ecosystems.
- For environmental protection in the region, coordinated efforts across border, collaborative effort by both countries.
- Producing effective economic and policy tools for environment safety measures.
- Focusing on practical monitoring to enable scientists and decision makers to see and understand trends in the important parameters of ecosystem.

Overcoming Information Barrier

- To improve this proposed action plan to overcome law-policy barrier suggesting 7-fold plan for protecting the sound use of water resources, preventing pollution and water depletion.
- Joint research, assessment and planning in flood management by both nations.
- Joint task force for monitoring of water quality and prevention of pollution.
- Joint commission for preserving conditions for natural migration of fish and other aquatic fauna.
- To develop the common guidelines for river basin water management.
- To developing joint hydrological monitoring and pollution control procedures.
- Developing tools for information exchange on managing water measures.

Overcoming Environmental Barriers

Focus on studies on the Selenga Delta habitat and issues related with water quality, including toxic pollutant and nutrient loading, water fluxes, sedimentation effect, and the wellbeing.

- Developing and analyzing the impact on delta flora and fauna of changing water conditions, including recommendations on optimal flows, as well as instream constructed wetlands.
- Integrated solution for the surface and ground water resources management of the basin and pollution issues.
- Hot spot analysis of pollution of Baikal basin, including a prioritized list of projects to be considered for future investment, the development of prefeasibility studies and revised regulations to

- reduce industrial pollution loading in the Baikal/Selenga basin.
- Joint actions to enhance ecosystem protection.
- Joint Russian-Mongolian Task Force on Transboundary Water Use and Protection.
- Establishing the infrastructure (transport, energy, waste management, waste recycling, waste water treatment) regarded as an obligatory standard by investor, then they could be the basis for a sustainable tourism development.
- Eco-tourism should be promoted where tour agency should take into consideration the criteria for sustainable tourism

Conclusion

Lake Baikal and Baikal basin is one of the very important regions in the world because the lake has 20% of world's fresh water and great biodiversity hub. It is difficult to explain the global significance and quality of Lake Baikal itself and by extension the greater Baikal basin in which the Lake exists. Baikal is the world's oldest (>25 million years), deepest lake (1642 m). With 20% of the Earth's unfrozen fresh water, it is the world's most voluminous lake containing more water than all five of North America's Great Lakes combined. The diversity of flora and fauna found in Lake Baikal is higher than any other freshwater lake in the world which is getting impacted by the human activities and above stated reasons in the region. The suggested strategy will help in containing the loss and give a sustainable approach for government and local communities to cooperate and save this great significant lake and basin.

References

- Baasanjav, G. and Tsend-Ayush, Y., 2001. Mongol Orny Zagas [Fish of Mongolia]. ADMON Publishing Company, Ulaanbaatar.
- Bondarenko, N.A, Tuji, A. and Nakanishi, M., 2006. A comparison of phyto-plankton communities between the ancient Lakes Biwa and Baikal. *Hydrobiologia*, **568(suppl. 1):** 25-29.
- Borodin, A. and Syroechkovski, E., 1983. Review of the Gold Dredges in Mongolia, with comments on mitigation of environmental impacts. *World Placer Journal*, **1:** 90-106.
- Hampton, S.E., Izmest'eva, L.R., Moore, M.V., Katz, S.L., Dennis, B. and Silow, E.A., 2008. Sixty years of

- environmental change in the world's largest freshwater lake—Lake Baikal, Siberia. *Global Change Biology*, **14:** 1947-1958.
- Matveyev, A.N., Pronin, N.M., Samusenok, V.P. and Bronte, C.R., 1998. Zapovedniki SSSR. Lsnaya Promyshlennost Publishing House, Moscow.
- Moore, M.V., Hampton, S.E., Izmest'eva, L.R., Silow, E.A., Peshkova, E.V. and Pavlov, B.K., 2009. Climate change in the world's "Sacred Sea", Lake Baikal, Siberia. *Biosciences*, **59:** 405-417.
- Robinson, W.P., 2001. Ecology of Siberia Taimen (Hucho taimen) in the Lake Baikal Basin. *J. Great Lakes Research*, **24(4):** 905-916.
- Robinson, W.P., 2001. Identification of Potential Water Quality Risks to Lake Baikal's Largest Tributary, the Selenga River, from mining and other sources: A preliminary investigation. Paper prepared for Baikal watch. Earth Island Institute, San Francisco, CA, USA. TACIS (Technical Assistance to the Commonwealth of Independent States).
- Shimaraev, M.N., Kuimova, L.N., Sinyukovich, V.N. and Tsekhanovskii, V.V., 2002. Manifestation of global climate change in Lake Baikal during the 20th century. *Doklady Earth Sciences*, 383A: 288-291.
- Soja, A.J., Tchebakova, N.M., French, N.H.F., Flannigan, M.D., Shugart, H.H., Stocks, B.J., Sukhinin, A.I., Parfenova, E.I., Chapin III, F.S. and Stackhouse, P.W. Jr., 2007. Climate-induced boreal forest change: Predictions versus current observations. *Global and Planetary Change*, 56: 274-296.
- Timoshkin, O.A., 1995. Biodiversity of Lake Baikal: Review of current state of knowledge and perspectives of studies. *In:* Timoshkin, O.A. (ed.). Guide and Key to Pelagic Animals of Lake Baikal with Ecological Notes [in Russian]. Nauka.
- UNESCO (United Nations Educational, Scientific and Cultural Organization), 1996. Sustainable Forestry in the Baikal Basin. TACIS.
- Williams, D.S. and Conroy, A.D., 1991. Convention Concerning the Protection of the World Cultural and Natural Heritage: Report from 20th Session, 2-7 December, 1996, Merida, Mexico. (Available at http://whc.unesco.org/archive/repcom96.htm#754).
- World Bank, 1996. Principal Point Pollution Sources in the Lake Baikal Watershed with Observations on Necessary Investments, Priorities, and Techniques to Minimize Pollutant Discharge. Report prepared for Davis and Associates, Wadhams, NY.
- Wrona, F.J., Prowse, T.D., Reist, J.D., Hobbie, J.E., Levesque, L.M.J. and Vincent, W.F., 2006. Climate change effects on aquatic biota, ecosystem structure and function. *Ambio*, **35:** 359-369.